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Abstract.

South Asian vegetation provides essential ecosystem services to the region and its 1.7 billion inhabitants that are closely

linked to its land-use forms and carbon storage potential. Yet, biodiversity is threatened by climate and land-use change.

Understanding and assessing how ecosystems respond to simultaneous increases in atmospheric CO2 and future climate change

is of vital importance to avoid undesired ecosystem change. A failure to react to increasing CO2 and climate change will likely5

have severe consequences for biodiversity and humankind. Here, we used the aDGVM2 to simulate vegetation dynamics in

South Asia under RCP4.5 and RCP8.5, and we explored how the presence or absence of CO2 fertilization influences vegetation

responses to climate change. Simulated vegetation under both RCPs without CO2 fertilization effects showed decrease in tree

dominance and biomass, whereas simulations with CO2 fertilization showed an increase in biomass, canopy cover, and tree

height and a decrease in biome-specific evapotranspiration by the end of the 21st century. The model predicted changes in above10

ground biomass and canopy cover that trigger biome transition towards tree-dominated systems. We found that savanna regions

are at high risk of woody encroachment and transitioning into forest. We also found transitions of deciduous forest to evergreen

forest in the mountain regions. C3 photosynthesis dependent vegetation was not saturated at current CO2 concentrations and

the model simulated a strong CO2 fertilization effect with the rising CO2. Hence, vegetation in the region will likely remain

a carbon sink. Projections showed that the bioclimatic envelopes of biomes need adjustments to account for shifts caused by15

climate change and eCO2. The results of our study help to understand the regional climate-vegetation interactions and can

support the development of regional strategies to preserve ecosystem services and biodiversity under elevated CO2 and climate

change.

1 Introduction20

Global climate has been identified as the primary determinant of large-scale natural vegetation patterns (Overpeck et al., 1990).

Climate change has affected global vegetation pattern in the past and caused numerous shifts in plant species distribution over
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the last few decades (Chen et al., 2011; Thuiller et al., 2008). It is expected to have even more pronounced effects in the future

that may lead to drastically increasing species extinction rates in various ecosystems (Brodie et al., 2014). Natural ecosystems

have been and continue to be exposed to increased climate variability and abrupt changes caused by increased intensity and25

frequency of extreme events such as heat waves, drought and flooding (Herring et al., 2018). At the same time, they are under

severe pressure due to anthropogenic disturbance and land conversion. Rising levels of atmospheric CO2 are a strong driver

of climate-induced vegetation changes (Allen et al., 2014). Anthropogenic CO2 emissions account for approximately 66% of

the total anthropogenic greenhouse forcing (Forster et al., 2007) and are thus largely responsible for contemporary and future

global climate change Parry et al. (2007). Rising CO2 is expected to alter distributions of plant species and ecosystems (Parry30

et al., 2007) both indirectly through its influence on global temperatures and precipitation patterns (Cao et al., 2010), two main

drivers of vegetation dynamics, and directly via its physiological effects on plants (Nolan et al., 2018). It is therefore of vital

importance to understand how ecosystems respond to simultaneous increases in atmospheric CO2 and temperature, changes

in precipitation regime, and altered ecosystem water balance in order to avoid critical ecosystem disruptions and the resulting

consequences for biodiversity and humankind.35

Increases in temperatures, decreases in precipitation as well as changes in precipitation seasonality can cause loss of vegeta-

tion biomass. Elevated atmospheric CO2 may influence vegetation due to the CO2 fertilization effect (Curtis and Wang, 1998;

Norby and Zak, 2011) that can influence photosynthesis, respiration, decomposition (Doherty et al., 2010), evapotranspiration

(ET) and biomass accumulation (Frank et al., 2015). These CO2 effects on plant growth and competition can alter community

structure, ecosystem productivity, climatic niches of ecosystems and biome boundaries (Nolan et al., 2018; Wingfield, 2013)).40

The physiology of C3 plants leads to increased carbon fixation efficiency at elevated levels of atmospheric CO2, improves their

ability for carbon uptake, and thereby increases carbon sequestration (Leakey et al., 2009; Norby and Zak, 2011) as well as

plant water use efficiency (Soh et al., 2019).

Long-term Free-Air Carbon dioxide Enrichment (FACE) experiments have demonstrated the productivity-enhancing effect

of elevated CO2 (Norby and Zak, 2011). These effects are due to the fact that C3 photosynthesis is not saturated at current45

atmospheric levels and thus C3 plants benefit from increasing CO2 (Ainsworth and Rogers, 2007). In contrast, C4 plants are

at their physiological optimum at current atmospheric CO2. Increasing CO2 concentration has been associated with woody

cover increase in structurally open tropical biomes such as grasslands and savannas (Stevens et al., 2017). This widespread

proliferation of woody plants in arid and semiarid ecosystems has been attributed to increased water use efficiency in C3 plants

that facilitates woody sapling establishment and growth due to higher drought tolerance (Kgope et al., 2010; Stevens et al.,50

2017). Change in vegetation distribution and altered vegetation structure feed back on climate by altering fluxes of energy,

moisture and CO2 between land and atmosphere (Friedlingstein et al., 2006). Feedback mechanisms also involve vegetation-

mediated changes in albedo, evapotranspiration, surface roughness and land-atmosphere fluxes (Field et al., 2007; Richardson

et al., 2013).

Ecosystem-level ET is a key ecophysiological process in the soil-vegetation-atmosphere continuum (Feng et al., 2017).55

Annually, 64% of the total global land-based precipitation is returned to the atmosphere through ET (Zhang et al., 2016).

Environmental change and concurrent vegetation changes alter ET and affect water availability (Mao et al., 2015), especially
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in arid and semiarid regions. In these regions, ET affects surface and subsurface processes such as cloud development, land

surface temperature, and groundwater recharge (Fisher et al., 2011).

South Asia is home to approx. 1.7 billion people and is one of the regions most vulnerable to climate change (Eckstein et al.,60

2018). It hosts four of the world’s biodiversity hotspots (Myers et al., 2000) and harbors different biome types ranging from

tropical in the south to temperate in the north at the fringe of the Himalayas. These hotspot are characterized by high levels of

diversity and endemism, and they are threatened by climate change and anthropogenic pressure such as land-use (Deb et al.,

2017). For instance, woody encroachment due to rising CO2 threatens South Asian savannas (Kumar et al., 2020) and sifting

cultivation in north eastern part of South Asia threatens biodiversity (Bera et al., 2006).65

Due to the absence of long-term field experiments such as FACE experiments, in the dominant biome types of the re-

gion, modeling studies are valuable tools to close existing knowledge gaps. Dynamic vegetation models (DGVMs, Prentice

et al., 2007) are particularly well-suited to address questions that focus on vegetation response to changing environmental

drivers, e.g., climate and CO2. While most DGVM studies in South Asia focused on vulnerability of forests to climate change

(Chaturvedi et al., 2011; Ravindranath et al., 2006, 1997)they often overlooked the severely threatened savanna biome. They70

were further limited when using contemporary environmental conditions to pre-define bioclimatic limits of plant functional

types (PFTs), and when using fixed eco-physiological parameters, for example to model carbon allocation. Moreover, many

DGVMs do not account for life history, eco-evolutionary processes and trait variability among individual plants (Kumar and

Scheiter, 2019). While some global-scale studies have investigated the potentially disruptive effect of increasing CO2 on natural

vegetation, carbon sequestration and biome boundaries (e.g., Hickler et al.; Sato et al., 2007; Smith et al.), detailed modeling75

studies focusing explicitly on South Asia have not been conducted. The physiological effects of increased CO2 and climate

change on South Asian vegetation is uncertain and needs to be resolved narrowed in order to improve understanding of regional

ecosystem functioning as well as implications for biodiversity conservation.

To address the knowledge gaps in existing studies, we used the aDGVM2 (adaptive dynamic global vegetation model version

2), an individual- and trait-based vegetation model that combines elements of traditional DGVMs (Prentice et al., 2007) with80

a new approach that allows community assembly resulting from environmental filtering applied to traits of modeled plant

individuals (Langan et al., 2017; Scheiter et al., 2013). The aDGVM2 thus overcomes the shortcoming of using pre-defined

and static PFTs. Originally, aDGVM2 had been tested for Amazonia Langan et al. (2017) and Africa (Gaillard et al.; Pfeiffer

et al., 2019). In order to adapt it to South Asian ecosystems and to capture the diversity of South Asian ecosystems, we

included C3 grasses, improved ecophysiological processes such as the leaf energy budget in order to estimate leaf temperature,85

implemented separate temperature sensitivities for C3 and C4 photosynthetic capacity (Vcmax and included snow in the water

balance model.

In this study we used the updated version of aDGVM2 and addressed the following questions:

1. How do projected changes in climate and CO2 following two Representative Concentration Pathways (RCP8.5 and

RCP4.5, Meinshausen et al., 2011) change the distribution, boundaries and climatic niches of biomes in South Asia?90
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2. How does the relationship between projected biomass, ET, temperature and precipitation change in response to CO2

fertilization?

3. What is the sensitivity of predicted changes in relation to presence and absence of CO2 fertilization?

Based on our results we analyzed climate-vegetation interactions to improve our understanding on how to manage and mitigate

impacts on biomes under climate change and increasing CO2.95

2 Methods

2.1 Description of the study region

Approx. 1.7 billion people populate South Asia, i.e., the Indian subcontinent, Afghanistan and Myanmar. South Asia incor-

porates a wide range of bio-climatic zones with distinctive biomes, ecosystem types, communities and species (Rodgers and

Panwar, 1988). Climatic conditions are controlled by interactions between the South Asian summer monsoon system and the100

region’s complex topography. The climatic envelope ranges from tropical arid and semi-arid regions in the west, to humid

tropical regions supporting rainforests in the northeast and temperate vegetation at the fringe of the Himalaya. Excluding the

Himalayan regions, South Asia has a mean annual temperature of approximately 24°C with very low spatial variability. Mean

annual precipitation (MAP) is 1190 mm, ranging from less than 500 mm in the warm desert zone in the west to more than 3500

mm in the northeast. The steep elevation gradients ranging from sea level to 8800 m result in a rich diversity of ecosystems that105

can alternate in areas of a few hundred square-kilometers. Topography is recognized as a strong driver of ecological patterns,

for example those related to forest structure and composition, floristic diversity, and soil fertility (Gallardo-Cruz et al., 2009;

Jucker et al., 2018; Sinha et al., 2018). South Asia hosts four major global biodiversity hotspots, namely the Western Ghats, Hi-

malayas, Indo-Myanmar and Sri Lanka (www.conservation.org, Conservation International, 2013, Myers et al., 2000). These

hotspots include a wide diversity of ecosystems such as mixed wet evergreen, dry evergreen, deciduous, and montane forests.110

Further vegetation types are alluvial grasslands and subtropical broadleaf forests along the foothills of the Himalayas, temper-

ate broadleaf forests in the mid hills, mixed conifer and conifer forests in the higher hills, savanna in the Deccan region and

southern part of Malaysia, and alpine meadows above the tree line (Conservation International, 2013).

2.2 Model Description

For this study we used aDGVM2, a DGVM that uses a dynamic trait approach. All details of the model are provided in Scheiter115

et al. (2013), Langan et al. (2017) and Gaillard et al.. We summarize main features of aDGVM2 in the supplementary material.

To adapt the aDGVM2 to the requirements of the study region, we incorporated new sub-routines into the model. We improved

the representation of (a) the water balance by including snow, (b) the carboxylation rate, (c) leaf temperature, and (d) we

included C3 grasses (previous model versions only simulate C4 grasses).

(a) Water balance. In aDGVM2, the soil water module is based on the tipping-bucket concept. As the model was originally120

developed with strong focus on tropical and subtropical forest and savanna regions, the original model version only considered
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water input in form of rain (see Langan et al., 2017). In the updated model version, precipitation is assigned as snow when daily

mean air temperature drops below 0°C. Snow accumulates on the soil surface or is added to the top of an existing snowpack.

The snowpack persists as long as air temperature remains below 0°C. Once temperature rises above 0°C, water from snowmelt

is added to the soil water pool and becomes available to plants. This process may improve the water availability for plants at125

the beginning of spring, for example in the Himalayan region. Snowmelt (Smelt, mm/day) is calculated following (Choudhury

et al., 1998) as

Smelt = 1.5 +KmPprecip(Ta−Tsnow)Spack, (1)

where Km is the coefficient of snowmelt (0.007 mm/day/ °C), Spack is the depth of the snowpack, Ta is daily mean air

temperature (°C), Pprecip is precipitation (mm/day) and Tsnow is the maximum temperature where precipitation falls as snow130

(0°C). We do not consider insulation effects of the snowpack in the model.

(b) Carboxylation rate.

In earlier versions of aDGVM2, leaf-level photosynthesis was calculated at population level, i.e., it was assumed that all

plants of a simulated representative vegetation stand have the same leaf-level photosynthetic rate. Only C3- and C4-type photo-

synthesis were distinguished. We therefore implemented new routines to calculate photosynthesis at a daily time step for each135

individual plant. This version of aDGVM2 now incorporates an empirical relation between specific leaf area (ASLA, mm2/mg)

and leaf nitrogen content per unit area (Na, g/m2) following Sakschewski et al. (2015),

Na = 6.89A−0.571
SLA , (2)

The standard maximum carboxylation rate of rubisco per leaf area (Vcmax,25, µmol/m2/s) was derived from the TRY database

Kattge and Knorr (2007) by Sakschewski et al. (2015) and is calculated as140

Vcmax,25 = 31.62N0.501
a , (3)

where Vcmax,25 is Vcmax at 25◦C.

In the model, ASLA is linked to the matric potential at 50% loss of xylem conductance (P50, see Langan et al., 2017). The

trade-off between ASLA and Vcmax mediated by leaf traits (Na) introduces variability in the spectrum of tree growth strategies in

aDGVM2. The effect of temperature on photosynthesis is well-described (Kirschbaum, 2004), and temperature may influence145

photosynthesis both directly, via temperature-dependency of enzyme-mediated metabolic rates of carboxylation and the Calvin

cycle (Sharkey et al., 2007), and indirectly via its effect on transpiration and plant water uptake and transport (Urban et al.,

2017). The maximum carboxylation rate (Vcmax) increases with temperature until it reaches an optimum, and decreases again

at temperatures above the optimum (Kattge and Knorr, 2007) due to reductions in enzyme activity. Above 30°C the electron

transport chain is gradually inhibited, and at temperatures above 40°C the denaturation of Rubisco and associated proteins150

becomes relevant (Lloyd et al., 2008). The temperature dependency of the carboxylation rate (Vcmax) is expressed as

Vcmax =
Vcmax,2520.1(Tleaf−25)

(1 + e0.3(Tlow−Tleaf ))(1 + e0.3(Tleaf−Tupp))
, (4)
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where Tleaf is the leaf temperature in °C (see next paragraph for calculation). The photosynthetic model of Collatz et al.

(1992) and Collatz et al. (1992) assumes specific values of Tupp and Tlow for C3 and C4 plants, respectively (Table S1 and

Table S2). This temperature range allows plants to grow most efficiently in their plant-specific climatic niches.155

(c) Leaf temperature. We calculate leaf temperature following the leaf-level energy budget concept (Gates, 1968). Leaf-level

photosynthesis, activity of leaf enzymes and transpiration depend on leaf temperature (Tleaf,°C), calculated as

Tleaf = Tair + (
Rn−λErgb

ρCP
), (5)

where Tair is air temperature (°C), Rn is net radiation absorbed by the leaf (MJ/m2/day), λ is latent heat of vaporization

(MJ/kg), E is evapotranspiration (m/day), rgb is the boundary layer resistance (m/s), ρ is the air density (kg/m3) and CP is the160

specific heat of dry air (MJ/kg/°C). Leaf temperature is used to calculate the temperature dependence of Vcmax used in the

photosynthesis model routines in equation (4). Absorbed net radiation (Rn), rgb and E are model state variables calculated

from climate input used in aDGVM2 (Tair, long-wave and short-wave radiation). Latent heat of vaporization (λ, ρ and CP are

assumed as constant parameters in this model version.

(d) C3 grasses. C3 grasses were not included in previous aDGVM2 versions (Gaillard et al.; Langan et al., 2017; Pfeiffer165

et al., 2019; Scheiter et al., 2013). We therefore implemented C3 grasses, following the approach used for C4 grasses in

previous model versions but adjusted the photosynthetic pathway (see Appendix S2 in Langan et al., 2017).C3 and C4 grasses

use a different leaf-level photosynthesis model (Farquhar et al., 1980) following the implementations of Collatz et al. (1991,

1992). The optimum temperature ranges for carboxylation for C3 and C4 grasses are also different (Table S1). Since C3 grasses

have higher cold tolerance than C4 grasses (Liu and Osborne, 2008), we implemented frost intolerance for C4 grasses but not170

for C4 grasses. Frost is assumed to damage the tissue of C4 grasses, and in aDGVM2 we kill 10% of the living leaf biomass of

C4 grasses per frost day independent of frost severity. A representation of C3 grasses in aDGVM2 is necessary for this study

to be able to simulate C3-dominated biomes such as the C3 grasslands in the north of South Asia (Quade et al., 1995).

2.3 Climate data

We used GFDL-ESM2M climate data for the period 1950 to 2099 from the Inter-Sectoral Impact Model Inter-comparison175

Project (ISIMIP2), as historical climate simulated by GFDL-ESM2M showed satisfactory performance over for South Asia

(McSweeney and Jones, 2016). The general circulation model (GCM) output was bias-corrected in ISIMIP and downscaled

to a spatial resolution of 0.5° × 0.5° (Warszawski et al., 2014). We used average, maximum and minimum air temperatures,

precipitation, surface downwelling shortwave radiation and long-wave radiation, near-surface wind speed, and relative humidity

at a daily temporal resolution. We used two representative concentration pathways, namely RCP4.5 and RCP8.5 (Meinshausen180

et al., 2011). These scenarios assume increases in radiative forcing of 4.5 and 8.5 Wm2 by 2100 (Van Vuuren et al., 2011) and

increases of atmospheric CO2 concentrations to 560 ppm and 970 ppm by 2100, respectively (Van Vuuren et al., 2011).
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2.4 Projected changes in temperature and precipitation

Mean annual precipitation (MAP) from GFDL-ESM2M shows decreases for South Asia under RCP4.5 and RCP8.5, except for

a small increase under RCP4.5 during the 2090s (2090-2099, Fig. S1). The Western Ghats and eastern Himalayan are projected185

to become wetter under both RCP4.5 and RCP8.5, whereas the western part of the region is projected to become drier by the

end of the century under both RCPs (Fig. S2). By the end of the 21st century, mean annual temperature (MAT) of South Asia is

expected to increase between ca. 1°C and 3.5°C under RCP4.5 and between 1°C and 6°C under RCP8.5, relative to the average

temperature in the baseline period of 2000–2009 (Fig. S1 and Fig. S2). The western parts of the region and the Himalayan

mountains are projected to experience higher increases in temperature than the rest of the region (Fig. S2).190

2.5 Soil and elevation data

Soil data was obtained from FAO (http://www.fao.org/soils-portal, Nachtergaele et al., 2009) and includes information on soil

properties and types. The soil properties include parameters required by aDGVM2: volumetric water-holding capacity, soil

hydraulic conductivity, soil bulk density, soil depth, soil texture, soil carbon content, soil wilting point and field capacity (for

details see Langan et al., 2017). A digital elevation model (DEM) at 90m spatial resolution was obtained from the Shuttle195

Radar Topography Mission (SRTM, http://srtm.csi.cgiar.org, Jarvis et al., 2008). It was resampled to a spatial resolution of

0.5° × 0.5°, to match the spatial resolution of climate data. Elevation values were used to estimate surface pressure. We did not

use slope and aspect in the model.

2.6 Model simulation protocol

Using the updated version of aDGVM2, we simulated four different scenarios for South Asia at 0.5° × 0.5° spatial resolution.200

We simulated potential natural vegetation until 2099 using daily climate data for RCP4.5 and RCP8.5. For both scenarios,

simulations were run with CO2 increase in line with RCP4.5 (hereafter RCP4.5+eCO2) and RCP8.5 (hereafter RCP8.5+eCO2)

and with the same climate data but fixed CO2 after 2005 at 375 ppm for RCP4.5 (hereafter RCP4.5+fCO2) and RCP8.5

(hereafter RCP8.5+fCO2). Fixing the CO2 concentration after 2005 mimics a situation where CO2 fertilization would not

occur and vegetation only responds to the climate signal. All simulations were conducted with natural fire as implemented in205

aDGVM2.

To ensure that simulated vegetation had sufficient time to adapt to prevailing environmental conditions, we conducted sim-

ulations for 650 years, split into a 500 year spin-up phase and a 150 year transient phase. For the spin-up phase, we randomly

sampled years of the first 30 years of daily climate data (1950 to 1979). For the transient phase, we used the sequence of

daily climate data between 1950 and 2099. Trial simulations showed that a 500 year spin-up period is sufficient to ensure that210

vegetation is in a dynamic equilibrium state with environmental drivers.
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2.7 Model benchmarking and evaluation

For benchmarking of aDGVM2 simulation results, we used five different remote sensing products: aboveground biomass

(Saatchi et al., 2011), tree height (Simard et al., 2011), tree cover (Friedl et al., 2010), MODIS evapotranspiration (Zhang

et al., 2010) and natural vegetation type (Ramankutty et al., 2010). All remote sensing data sets were aggregated to a 0.5° ×215

0.5° spatial resolution, to match the spatial resolution of model simulations by calculating the mean of all values within each

0.5° grid cell, or using nearest neighbor aggregation in the case of vegetation type ("raster" package in R, Hijmans and van

Etten, 2012). We first compared model results and observations assuming that the entire study region is covered by natural

vegetation (Figs.1 and 2). Then we repeated the comparisons only for areas with predominantly natural cover, i.e., we masked

out areas with more than 50% managed land (Figs. S3 and S4, land cover classes 7 ‘Cultivated and Managed Vegetation’ and220

9 ‘Urban and Built-up’ in, Tuanmu and Jetz, 2014). We calculated Normalized Mean Squared Error (NMSE) and coefficient

of determination (R2 to quantify agreement between data and simulated variables.

2.8 Biome classification

The aDGVM2 simulates state variables such as biomass and canopy cover of individual plants in simulated vegetation stands

(1 hectare). We used woody canopy area, abundance of shrubs and trees, and grass biomass to classify the simulated vegetation225

into biome types (Fig. S5). We used 10-year averages of state variables for the periods 2000-2009, 2050-2059 and 2090-2099 to

represent the 2000s, 2050s and 2090s, respectively. Biome classification is often study-specific and to some degree subjective

(Torello-Raventos et al., 2013). Here we classified areas with canopy cover below 5% as barren if grass biomass was below 100

kg/ha, and as grassland if grass biomass exceeded 100kg/ha. Grassland was classified as C3 grassland or C4 grassland based

on predominance of respective biomass proportions. Simulated woody individuals were classified as trees if they had three or230

less stems and as shrubs if they had four or more stems. If tree canopy cover exceeded shrub canopy cover and was between

5% and 45%, then vegetation was classified as woodland if grass biomass was below 100kg/ha and as savanna if grass biomass

was above 100kg/ha (Kumar, 2000). Savanna was further separated into C4 savanna or C3 savanna based on the dominant grass

biomass. Areas with canopy cover greater than 45% were classified as forests if tree cover exceeded shrub cover, or shrubland if

shrub cover exceeded tree cover, irrespective of grass biomass (Fig. S5). Forests were subdivided into evergreen and deciduous235

forest based on the dominance of canopy area of both tree phenology types. Biomes considered in this study were hence C3

grassland, C4 grassland, shrubland, woodland, deciduous forest, evergreen forest, C3 savanna and C4 savanna (Fig. S5).

Biomes differ in the amount of precipitation they receive and their temperatures. Whittaker plots describe the boundaries of

observed biomes with respect to average temperature and precipitation. We used R-package (‘plotbiomes’, https://github.com/

valentinitnelav/plotbiomes by Valentin S, tefan ) to create Whittaker plot based on Ricklefs (2008) and (Whittaker, 1978)(Figs.240

8 and S9). We overlaid the simulated biomes on Whittaker plots to look at climatic niches of biomes under current climate and

shifts in climatic niches by the end of this century as a result of climate change and elevated CO2 under both RCPs (see section

3.6).
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2.9 Calculation of biome-level evapotranspiration

For analyzing evapotranspiration change we calculated the amount of water transpired per unit leaf biomass. Simulated ET and245

leaf biomass for woody plants, C3 grass and C4 grass were summed and scaled to the grid level, taking latitudinal variation of

grid cell area into account. As leaf biomass influences transpiration we normalized ET to leaf biomass per grid cell. We then

calculated the biome-level ET normalized to biomass as ratio of total annual ET to total leaf biomass for respective biomes:

Ebiome =
∑G

i=1(Egrid,iAgrid,i)∑G
i=1(Bgrid,iAgrid,i)

(6)

where 1, 2, . . . , G represent the grid cells of the study area, Ebiome is biome-level ET (mm/kg/year), Agrid,i is the area of grid250

cell i (m2, Egrid,i is total ET of grid cell i (mm/year), Bgrid,i is leaf biomass of grid cell i (kg/m2. We calculated the percentage

change in Ebiome for respective scenarios between the 2010s and 2050s, and between the 2010s and the 2090s.

3 Results

3.1 Model performance and contemporary vegetation patterns

The aDGVM2 captured contemporary large-scale patterns of biomass, canopy cover, tree height and evapotranspiration. Model255

results agreed well with remote sensing products used for benchmarking (Fig.1). R2 was 0.61, 0.45, 0.6 and 0.71, and NMSE

was 0.48, 0.78, 0.4 and 1.07 for biomass (Saatchi et al., 2011), tree height (Simard et al., 2011), tree cover (Friedl et al., 2010)

and evapotranspiration (Zhang et al., 2010), respectively (Figs.1 and 2). Data-model agreement improved when masking out

managed land (Tuanmu and Jetz, 2014). R2 increased to 0.66, 0.71, 0.67 and 0.80, while NMSE increased to 0.43, 0.30, 0.61

and 1.03 for biomass, tree height, tree cover and evapotranspiration, respectively (Fig. S3 and S4). The model performed well260

in areas with higher fractional cover of natural vegetation, such as the Himalayas, Western Ghats and the northeast of the

region, although the model overestimated biomass and canopy area in the Brahmaputra basin in the northeast of the study

region (Fig.1, Kumar et al., 2020).

The model simulated evergreen forests along the Himalayan mountains, southern part of the Western Ghats and Sri Lanka,

whereas deciduous forest was simulated in the northern Western Ghats, central India and southern parts of Myanmar (Fig.3a).265

Savanna was simulated in southern, northern and western parts of India and some regions of central Myanmar. Shrublands

were simulated in the arid regions of Pakistan, the western parts of India and Afghanistan. The aDGVM2 simulated woodland

in the west of central India, and grassland in the drier regions (Fig.3a). A large proportion of simulated deciduous forest area

is in good agreement with that in maps of potential natural vegetation (PNV, Figs.3b,c). However a large quantity of simulated

savanna area is misrepresented as deciduous forest in the map of PNV (Fig.3b, Kumar et al., 2020).270

3.2 Projected changes in biome distribution pattern

The aDGVM2 projected changes in canopy cover and above ground biomass in response to climate change and CO2, and

hence, changes in biome type, predominantly from savanna and grassland to deciduous forest. Simulations showed an increase
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in the area covered by evergreen and deciduous forests under elevated CO2 (eCO2) under both RCP4.5 and RCP8.5, in con-

trast to simulations where CO2 was fixed after 2005 (fCO2, (Table.1). Under RCP4.5+eCO2, evergreen and deciduous forest275

cover increased by 3.1% and 21.2% until the 2050s, and 38.0% and 59.1% until the 2090s, respectively. Under RCP8.5+eCO2,

evergreen and deciduous forest increased by 24.8% and 45.4% until the 2050s, and 46.5% and 60.2% until the 2090s, respec-

tively. The model simulated a small increase in forest area for RCP4.5+fCO2, where the area increased by 7.9% and 14.4% for

evergreen and deciduous forest until the 2090s, respectively. Evergreen forests were mainly distributed along the Himalayas,

Western Ghats and eastern parts of the study region under current conditions (2000s, (Fig.4a), but expanded into the south of280

peninsular India in future periods (2050s and 2090s) under RCP4.5+eCO2. Deciduous forest cover also increased in future

periods in central India and along the Himalayas (Figs.4 and S6).

The extent of C4 savanna showed a significant decrease under scenarios with eCO2, although in RCP4.5+eCO2, it showed

a temporary increase by 12.1% between the 2010s and the 2050s (Table. 1, Fig.4). Simulated C4 savanna area decreased by

14.1% until the 2090s under RCP4.5+eCO2. Under RCP8.5+eCO2 the model projected a decrease in C4 savanna area of 21.6%285

and 32.2% until the 2050s and the 2090s, respectively. The area covered by C4 savanna increased under both RCPs with fCO2

(Table.1). C4 savannas were mainly located in the northern plain and peninsular India in the baseline period. However, these

areas were replaced by deciduous forests in the northern plain and central India, and by evergreen forests in peninsular India

and in the southeast of the region by the 2090s under eCO2 scenarios (Figs.4a and S6a). The model simulated an area decrease

for woodland, shrubland, grassland and C3 savanna by the 2090s under all scenarios (Table. 1, Fig. 4). Simulations showed an290

increase in barren areas in the western part of the region under all scenarios (Figs. 4 and S6, Table. 1).

3.3 Projected changes in biomass at biome level

The aDGVM2 predicted an increase in mean biomass for evergreen and deciduous forest in the eCO2 scenarios for both RCPs

(Table. 2). Under RCP4.5+eCO2, mean above ground biomass in evergreen and deciduous forest increased by 8.1% and 14.4%

by the 2050s and 3.8% and 15.7% by the 2090s, relative to the baseline period. The increase is even higher under RCP8.5+eCO2295

(Table. 2). The mean biomass of woodland decreased under both RCPs except for the 2050s with eCO2 scenarios. The mean

biomass of grassland increased under RCP4.5, although it decreased for C4 grassland under RCP8.5 for both fCO2 and eCO2

scenarios. Shrublands in the western part of the study region showed an increase in mean biomass under eCO2 scenarios except

for the 2050s under both RCPs, and a decrease under fCO2 for both RCPs (Table. 2). Our results showed that under RCP4.5

and RCP8.5 biomass decreased in the areas along the Himalayas, as well as in the central, north-eastern and western parts of300

the study region by the end of the century. Modeled biomass decrease is higher under RCP8.5 in these regions (Figs. 5 and S7).

Biomass in the central and south-eastern part of the region is projected to increase under both RCPs with eCO2 until the 2050s

and 2090s, and to decrease in southern India and in parts of western South Asia (Figs. 5 and S7). We found increased biomass

in Afghanistan, western Pakistan, Nepal and southern part of Myanmar, and decreased biomass in the western arid part of

the study region under both RCPs for both eCO2 and fCO2 (Fig.7), though the magnitude of change is considerably different305

(Figs.5 and S7). There were few small areas in the western part of the study region where the model predicted increased
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biomass only under fCO2 for both RCPs (Figs.7). We found increased biomass over large part of the study region under eCO2

for both RCPs shows areas (Figs.7) where CO2 fertilization compensates climate change induced biomass die-back.

3.4 Projected changes in evapotranspiration at biome level

The response of simulated Ebiome varies in different biomes under both RCP4.5 and RCP8.5 (Table. 3). Under the RCP4.5+fCO2310

scenario the model predicted a decrease in ET in all biomes except for deciduous forest and shrubland where it increased by

1% and 2.1% until the 2050s, and by 0.3% and 11.9% by the 2090s, respectively. Simulated Ebiome under RCP8.5+fCO2

for deciduous forest and shrubland increased by 4.2% and 5.2% until the 2050s, and by 5.2% and 16.4% until the 2090s,

respectively. The model also predicted increased Ebiome for C4 grassland, evergreen forest and C4 savanna until the 2090s

under RCP8.5+fCO2 (Table.3). Comparisons of the RCP4.5+fCO2 and RCP8.5+fCO2 scenarios indicated that the former had315

a higher Ebiome than the latter scenario across all biomes because precipitation decrease is higher in the RCP8.5 scenario than

in the RCP4.5 scenario. Under both RCPs with eCO2, the model predicted a decrease in Ebiome across all biomes, except

a marginal increased Ebiome for shrubland under RCP4.5 and deciduous forest under RCP8.5 until the 2050s and the 2090s

(Table. 3). In general, RCP scenarios with eCO2 predicted reduced Ebiome across most of the biomes compared to simulations

with fCO2.320

3.5 Response of mean ET and mean above ground biomass to climate change

The model predicted a larger increase in absolute annual mean ET (mm/year) under eCO2 than fCO2 for both RCP scenarios

due to the corresponding increase in biomass (Figs. 5 and S7). We compared the spatially averaged annual values of simulated

absolute ET with MAP over the period from 1951 to 2099 and found a statically significant relation (p-value <0.005). We

found that absolute ET is positively correlated with MAP under all four scenarios (Figs.6a and S8a), but weakly correlated325

with MAT (Figs. 6b and S8b). For a given MAP, the spatially averaged annual value of above ground biomass (AGBM) was

lower in scenarios with fCO2 than scenarios with eCO2 under both RCPs (Figs. 6c and S8c). Spatially averaged annual value

of AGBM decreased beyond a MAT of 23.5°C for both RCPs with fCO2, whereas it increased beyond 23.5°C under both RCP

scenarios with eCO2 (Figs.6d and S8d).

3.6 Impact of climate change on climatic niches of biomes330

The climate niches of simulated biomes broadly overlapped with biome niches in the Whittaker scheme (Figs. 8 and S9,

Ricklefs, 2008; based on Whittaker, 1975). Under RCP4.5+eCO2 and RCP8.5+eCO2, the aDGVM2 simulated shifts of climatic

niches of biomes. Evergreen and deciduous forest biomes were predicted to invade the niche space of savannas under eCO2

scenarios (Figs.5 and S9). Savannas in turn were predicted to expand their climatic niche to MAT > 30°C by 2099, a climatic

space that was essentially not occupied by current biomes. Under RCP8.5+eCO2, forests completely occupied the climate335

space currently occupied by savanna (Fig. S9).
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In both scenarios with fCO2, savanna occupied the climate with MAT >25°C and MAP between 500mm and 1500mm and

did not show major woody encroachment. The model predicted that savanna expansion in climate space was higher under

RCP8.5+fCO2 than under RCP4.5+fCO2 (Figs.8 and S9). Other biomes also experienced shifts in their climate space (Fig.

8). Grasslands and shrublands occupied the region with low MAP (<500mm), however the results showed that woodland also340

occupied low MAP (<800mm) regions, which corresponds to the western arid and semi-arid region of the study region under

scenario with eCO2 (Fig. 8).

4 Discussion

4.1 Impact of climate change and elevated CO2 on biomes and biomass

Our simulations for RCP4.5+eCO2 and RCP8.5+eCO2 showed a strong positive impact on vegetation growth, i.e., increases345

of biomass, canopy cover and canopy height. Mean biomass in most biomes was projected to increase, but the magnitude

of increase differed considerably between different scenarios (Table.2). Projected change in canopy cover resulted in biome

transitions. Under future conditions, the spatial distribution, extent and biomass of evergreen forests mostly remained at the

current state, and evergreen forests were more resistant to climate change than deciduous forests. Expansion of deciduous

forest into open biomes due to increasing woody cover resulted in significant loss of savanna area in the Deccan region under350

both RCPs with eCO2 by the end of the century. Transition from deciduous forests to evergreen forest was simulated for the

mountain regions of South Asia.

The increasing woody biomass and canopy cover, i.e., woody encroachment, agree with the reported greening trend in South

Asia during the last three decades (Wang et al., 2017). Increasing CO2 has been identified as the most likely driver of increasing

biomass in many ecosystems, in studies based on both field observation e.g., FACE experiments, and satellite data (Brienen355

et al., 2015; Fischlin et al., 2007; Piao et al., 2006; Schimel et al., 2015). Elevated CO2 affects plants by increasing their

photosynthetic rate, growth rate and water use efficiency, leading to an increase in biomass (Leakey et al., 2009; Norby and

Zak, 2011). Increased photosynthetic rates under elevated CO2 are due to an increase in the rate of rubisco carboxylation for C3

plants, with a concurrent decrease of photorespiratory losses of carbon (Long et al., 2004). Due to the improved carboxylation

efficiency, C3 plants can respond by reducing stomatal conductance, thereby reducing transpirational losses, improving leaf360

water status, water use efficiency, and favoring leaf area growth (Long et al., 2004; Norby and Zak, 2011). However, it is still

unclear how these responses scale to the ecosystem level (Hickler et al., 2015), and how nutrient limitation from the soil may

influence ecosystem responses to eCO2. Körner (2015) argued that carbon from atmosphere can only be converted into biomass

if other factors such as nutrients, temperature and water are not limiting. In the long run, whether ecosystems act as carbon

source or sink can be estimated using models that consider all factors that are relevant in the carbon cycle (Fatichi et al., 2014;365

Körner, 2015). According to our simulations we can conclude that natural vegetation of South Asia likely will remain a carbon

sink in the future.
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4.2 Impact of climate change and fixed CO2 on biomes and biomass

Under both fCO2 scenarios, the spatial distribution of savanna areas remained in its contemporary state. Central India and the

Deccan Plateau showed a transition of deciduous forest to savanna, because forest canopy opened up due to tree mortality370

caused by increasing temperature and reduced MAP. This indicates that plants experience temperature and drought stress un-

der fixed CO2 concentration. These stresses were compensated by CO2 fertilization in eCO2 scenarios where the aDGVM2

simulated increased biomass and woody encroachment in areas affected by climate-induced die-back in fCO2 simulations.

This aDGVM2 behavior agrees with, Lapola et al. (2009) who modeled biome shifts from forest to savanna in absence of

CO2 fertilization for the Amazon region. Changes in precipitation regimes are likely to have a strong influence particularly in375

arid and semi-arid regions, such as grasslands (Verstraete et al., 2009). The complex interactions of inter-annual precipitation

variability and precipitation seasonality can result in rapid ecosystem transitions (e.g., between alternative stable states with

high and low vegetation biomass; Holmgren and Scheffer, 2001). The decrease in simulated AGBM after MAT increases be-

yond 23.5°C under fCO2 scenarios can be explained by the longer exposure of vegetation to temperatures beyond the optimum

temperature range of C3 photosynthesis during the main growing season. This effect was further enhanced by decreasing MAP380

and the absence of CO2 fertilization. This implies that the increase in MAT above 23.5°C together with weak CO2 fertilization

would have negative consequences for carbon sequestration. It also implies that we need a better understanding of impacts

of heat stress on vegetation and how it interacts with drought and CO2 fertilization. It is also unclear to what degree thermal

acclimation may counteract some of the negative effects on plant growth caused by higher temperatures (Lombardozzi et al.,

2015).385

4.3 Impact of climate change and CO2 change on climatic niches of biomes

Elevated CO2 has a major impact on the climatic niche space of biomes, especially the climatic envelope of savannas. Our

simulations indicated that forest invaded the niche space currently occupied by savanna by the end of the century. The expansion

of forests to drier areas corresponds to a widening of their climate niche space under eCO2. This expansion is corroborated by

the fact that in absence of CO2 fertilization the climatic niche of biomes is stable, i.e., biomes occupy the same niche under390

current and future conditions. These findings imply that the bioclimatic boundaries used to define biome niche space are not

static, but are specific for given CO2 levels. Therefore, the thresholds of the Whittaker’s biomes need to be redefined for a

high-CO2 world such that they encompass the altered climatic envelopes of biomes under elevated CO2 in future (Fig. 5). The

shift in niche space can be attributed to the shift in plant communities caused by the combined effect of climate change and

elevated CO2, which increases plant water efficiency allowing them to grow in harsh condition. These shift can also lead to395

change the characteristics of biomes by altering community structure and ecosystem functions (Chapin et al., 1997).

4.4 Effect of CO2 on ET and its interaction with climate change

Climate change has direct effects on hydrological processes (Liu et al., 2008). ET and water deficit influence plant productivity

and distribution (Stephenson, 1998). Higher biomass resulted in increased absolute amounts of ET for eCO2 scenarios in some
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parts of the study region under both RCPs by the end 21st century (Figs. 5 and S7). This change can be attributed to the fact400

that plants accumulated higher biomass while reducing stomatal conductance due improved water use efficiency under eCO2

scenarios and resulted in reduced ET per unit leaf biomass (Warren et al., 2011). Our results showed that the strength of the

CO2 fertilization effect is relevant when attempting to determine Ebiome at biome level during the 21st century. Biome-specific

ET decrease was less pronounced under RCP4.5 due to a lower concentration of atmospheric CO2 compared to RCP8.5. Our

simulated decrease in ET in response to climate change and increasing CO2 concentration agrees with Kergoat et al. (2002) who405

have reported decreased ET under elevated CO2 concentration in a chamber experiment. However, reduced ET under eCO2

can reduce regional-scale atmospheric humidity and thereby enhance the vapor pressure deficit (VPD), a driving force for

water loss, between leaves and the atmosphere, which may partially counteract CO2-induced reduction of ET due to decreased

stomatal conductance. Projected increases in air temperature can also enhance atmospheric water storage capacity and VPD,

and thereby evapotranspiration may increase (Warren et al., 2011). As future climate projections vary spatially and temporally,410

there was high model uncertainty on how ET will respond to changes in precipitation and temperature.

4.5 Implication of woody encroachment for water resources

Water is a limiting factor for vegetation in arid and semi-arid regions. Improved WUE of C3-plants under eCO2 boost produc-

tivity and therefore facilitated woody encroachment. However, increased woody cover can negatively affect water resources.

Acharya et al. (2018) showed that increased woody cover hinders the downward movement of water in the soil profile as result415

of increased rooting depth and density in more densely-packed woody vegetation. Increased water inception through roots in

the soil can have negative effects for ground water recharge. It is therefore necessary to control the abundance of woody plants

in semi-arid regions to control streamflow and enhance groundwater recharge (Bednarz et al., 2001).

4.6 Implication of the projected change for conservation

Changes in biome types imply changes in biodiversity, ecosystem function and productivity. Each biome is characterized420

by a range of distinctive ecological processes and functions. The distribution pattern of plants in the mountains is largely

regulated by the altitude and climatic factor (Saikia et al., 2017). These fragile ecosystems such as forests, in the mountains

have high species richness and needed to be protected from the ever-increasing anthropogenic pressure and climate change. In

the other hand, open biomes such as grassland and savanna support high biodiversity (Parr et al., 2014). Pronounced increases

in tree density in grasslands and savannas will alter vegetation structure and reduce grassland biodiversity. Such changes425

will negatively affect savanna-specific ecosystem services such as grazing potential, tourism and wildlife habitat availability

(Parr et al., 2012). The threat posed to the biodiversity of Asian savannas by climate change is aggravated by inadequate

management policies that misinterpret them as degraded forest (Ratnam et al., 2016). In this context, management policies

aim to afforest open biomes, although paleo-ecological evidence indicates that these open biomes are not degraded forest but

ancient ecosystems (Kumar et al., 2020; Ratnam et al., 2016).430

In South Asia, biodiversity hotspots have a very unique topography, where climate varies strongly over short distances. As

global biodiversity hotspots, mountain forest ecosystems in the Western Ghats, the Himalayas and northeastern part of the
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study area (Indo-Myanmar) are particularly vulnerable to climate change (Myers et al., 2000) and need targeted management

action to mitigate adverse effects. Conservation of these hotspots requires consideration of many different attributes of plant

communities, ecosystems, landscapes, and plant diversity, how they will change, and how their ecosystem services are valued.435

Conservation methods and policies that can accommodate minimal losses of ecosystem services and provide robust strategies

for mitigating climate change impacts should be developed and implemented. In this context, DGVMs facilitate the exploration

of vegetation-climate interactions by providing detailed results for different management and climate scenarios. Such an ex-

ploration of different possible scenarios is necessary to develop optimized mitigation and conservation strategies for protected

areas in biodiversity hotspots. The value of DGVM modelling results lies in their potential to provide insights into multiple440

future trajectories. Based on the most likely trajectories, the results can be used to tailor best-practice strategies for decision

makers that need to manage conservation areas or protected areas Boulangeat et al. (2012).

4.7 Limitations of this modelling study

Our simulation results are constrained by the model formulation and the assumptions underlying aDGVM2. Disagreement

between model results and data used for benchmarking can be attributed to the fact that the aDGVM2 simulates potential445

natural vegetation whereas remote sensing products integrate land use. This implies that enhancing the model to simulate

observed land cover patterns would require additional information on anthropogenic impacts. Anthropogenic activities such as

deforestation, habitat conversion and urbanization can modify the interactions between climate, plant communities and biomes

(Hansen et al., 2001).

In addition data-model disagreement can be explained by uncertainties in aDGVM2 and processes currently not considered.450

For instance, the aDGVM2 uses carbon allocation parameters that are not easily measurable in the field, which is limits

the evaluation of simulated mechanisms. The model currently lacks a representation of carbon that plants actively invest

into nutrient acquisition (e.g. mycorrhiza) or to build defenses against predation and pathogens (Zemunik et al., 2015) and

there is insufficient ecophysiological data from the region, required for parameterization of trait ranges used to simulate plant

communities (Kumar and Scheiter, 2019). The complexity of the interactions between global change and biomes as well as455

biodiversity is difficult to model in absence of such data. Further, the strength of CO2 fertilization modelled in aDGVM2 may be

overestimated, given that the model does not include nutrient limitation (Körner et al., 2005; Terrer et al., 2018). Despite these

caveats, we are nonetheless confident to capture general patterns of future global change and its consequences for biodiversity

in South Asia.

5 Conclusions460

We investigated the impact of eCO2 and climate change on South Asian vegetation with the aDGVM2. The model reproduced

the contemporary distribution of biomes, biomass, ET and tree height. In comparison to fCO2 simulations, we found that

climate change and CO2 fertilization in combination are substantial drivers of biome change, and that elevated CO2 concen-

trations also altered the climatic envelope of biomes in addition to causing increases in biomass, tree height and canopy cover.
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Continued biomass increase indicates that South Asia’s natural vegetation will likely remain a carbon sink in the 21st century.465

Our results also imply woody encroachment posing threat to open biomes and causing transition of savanna biomes to decidu-

ous forest in the future which are particularly critical aspect in the context of biodiversity conservation. Thresholds that define

bioclimatic envelopes of biomes are not static, but are specific for given CO2 concentrations which imply that these thresholds

need to be adjusted to account for changed climatic niches caused by eCO2 in the future. We also found that simulated decrease

in biomass-specific ET is more pronounced in scenarios with eCO2 than in scenarios with fCO2 which indicates that water use470

efficiency will likely increase due to CO2 fertilization.

The biome transitions simulated under eCO2 and changing climate indicate the need to adjust ecosystem management,

mitigation strategies, and conservation policies for protected areas to allow targeted long-term management. To understand the

significance of ecological responses to climate change, it is essential to improve and expand biological monitoring activities

(Loreau et al., 2001). To achieve this, most vulnerable biomes identified by modeling results such as the ones we present in475

this study could be proposed as high-priority targets for programs that monitor vegetation-climate interactions, productivity

and biodiversity Proença et al. (2017).
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Table 1. Biome cover (in %) for the 2000s, 2050s and 2090s, and percent (%) change in biome cover from the 2000s to 2050s and the 2000s

to 2090s under RCP4.5 and RCP8.5 with fixed and elevated CO2. ∆ indicates percentual biomass changes between time periods.
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RCP4.5 + fCO2

2010s 5.6 15.4 4.6 18.2 11.7 17.6 6.9 17.7 2.4

2050s 6.3 14.8 3.2 15.7 11.2 18.6 6.7 22.1 1.4

2090s 10.4 12.3 2.3 10.0 12.7 20.1 6.0 24.7 1.4

∆ 2050s-2010s 13.0 -3.7 -32.2 -13.6 -4.0 5.6 -3.0 25.4 -39.1

∆ 2090s-2010s 87.0 -20.1 -50.0 -45.2 7.9 14.4 -12.7 40.1 -41.3

RCP4.5+ eCO2

2010s 5.7 15.2 4.8 18.6 11.5 17.5 6.8 17.5 2.4

2050s 6.5 13.9 3.5 15.0 11.9 21.2 7.0 19.6 1.3

2090s 10.4 10.4 2.5 10.7 15.9 27.9 6.2 15.1 0.9

∆ 2050s-2010s 13.5 -8.2 -26.9 -19.7 3.1 21.2 3.8 12.1 -44.7

∆ 2090s-2010s 82.0 -31.6 -48.4 -42.4 38.0 59.1 -8.4 -14.1 -63.8

RCP8.5 + fCO2

2010s 6.3 14.7 4.5 18.8 11.7 17.3 6.3 18.0 2.4

2050s 8.8 12.3 2.5 14.7 12.9 21.7 6.6 19.0 1.5

2090s 9.4 15.0 2.5 11.0 10.8 14.2 6.7 29.0 1.4

∆ 2050s-2010s 39.0 -16.5 -43.7 -21.9 10.1 25.0 4.1 5.4 -39.1

∆ 2090s-2010s 48.8 1.8 -43.7 -41.6 -7.9 -17.9 5.7 61.0 -41.3

RCP8.5 + eCO2

2010s 5.9 14.8 4.7 18.0 11.6 17.5 7.1 17.9 2.5

2050s 9.7 10.5 3.2 13.9 14.5 25.4 7.1 14.1 1.6

2090s 6.3 11.5 4.2 12.6 17.0 28.0 7.0 12.2 1.3

∆ 2050s-2010s 64.9 -29.5 -32.6 -22.9 24.8 45.4 0.7 -21.6 -35.4

∆ 2090s-2010s 7.0 -22.2 -10.9 -30.3 46.5 60.2 -1.5 -32.2 -47.9
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Table 2. Mean biomass (in t/ha) within biomes for the 2000s, 2050s and 2090s, and percent (%) change in biomass from the 2000s to 2050s

and the 2000s to 2090s under RCP4.5 and RCP8.5 with fixed and elevated CO2. ∆ indicates percentual biomass changes between time

periods.
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RCP4.5 + fCO2

2010s 0.9 1.5 30.4 189.7 142.1 4.0 35.5 36.8

2050s 0.9 1.8 29.2 191.0 144.0 3.6 38.0 44.7

2090s 0.9 2.1 24.5 188.1 148.4 3.3 32.6 31.8

∆ 2050s-2010s -1.1 19.5 -4.0 0.7 1.3 -10.9 6.8 21.4

∆ 2090s-2010s 4.4 35.1 -19.4 -0.9 4.4 -17.8 -8.2 -13.7

RCP4.5 + eCO2

2010s 0.9 1.4 30.7 189.2 142.5 4.0 35.9 37.3

2050s 1.0 1.5 34.7 204.6 162.9 4.3 48.1 53.2

2090s 1.0 1.6 29.3 196.4 164.9 4.1 43.2 51.8

∆ 2050s-2010s 17.2 5.6 13.0 8.1 14.4 6.0 34.0 42.7

∆ 2090s-2010s 12.6 8.3 -4.6 3.8 15.7 2.5 20.4 39.1

RCP8.5 + fCO2

2010s 0.9 1.5 30.7 191.1 146.3 3.9 35.8 34.9

2050s 0.7 1.6 23.5 182.1 134.7 3.3 31.2 28.0

2090s 0.8 1.6 18.7 175.7 136.4 3.1 28.5 33.2

∆ 2050s-2010s -19.1 4.7 -23.4 -4.7 -7.9 -15.3 -12.8 -19.7

∆ 2090s-2010s -14.6 4.7 -39.0 -8.0 -6.8 -20.0 -20.5 -4.9

RCP8.5 + eCO2

2010s 0.9 1.3 31.2 188.3 146.1 4.1 36.5 32.0

2050s 1.0 1.4 32.1 206.3 162.7 4.0 45.1 47.2

2090s 0.7 1.1 30.8 206.0 183.4 4.7 49.8 50.7

∆ 2050s-2010s 9.9 8.7 2.8 9.6 11.3 -1.5 23.6 47.4

∆ 2090s-2010s -22.0 -12.7 -1.6 9.4 25.6 15.5 36.6 58.2
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Table 3. Biome-level ET normalized to biomass (Ebiomes, mm/kg/year) for the 2000s, 2050s and 2090s, and percent (%) change in Ebiomes

from the 2000s to 2050s and the 2000s to 2090s under RCP4.5 and RCP8.5 with fixed and elevated CO2. ∆ indicates percentual ET changes

between time periods.

RCP Scenarios

Y
ea

r

C
4

G
ra

ss
la

nd

C
3

G
ra

ss
la

nd

W
oo

dl
an

d

E
vg

.f
or

es
t

D
ec

.f
or

es
t

Sh
ru

bl
an

d

C
4

Sa
va

nn
a

C
3

Sa
va

nn
a

RCP4.5 + fCO2

2010s 186.7 95.5 257 159.7 288.5 183.3 252.5 194.2

2050s 170.9 80.5 217 157.4 291.3 187.2 244.6 151.9

2090s 185 72.3 209.6 140.7 289.3 205.2 247.1 179.1

∆ 2050s-2010s -8.5 -15.7 -15.6 -1.4 1 2.1 -3.1 -21.8

∆ 2090s-2010s -0.9 -24.3 -18.5 -11.9 0.3 11.9 -2.1 -7.8

RCP4.5 + eCO2

2010s 185.4 93.4 259.7 159.7 288.1 190.9 251.6 188.4

2050s 161.2 79.7 217 147.8 283 183.2 238.2 153.4

2090s 164.1 73.4 210.2 138.7 280.4 197.2 236.6 157.1

∆ 2050s-2010s -13.1 -14.6 -16.5 -7.4 -1.8 -4.1 -5.3 -18.6

∆ 2090s-2010s -11.5 -21.4 -19.1 -13.2 -2.7 3.3 -6 -16.6

RCP8.5 + fCO2

2010s 172.8 87.4 257.5 160.9 286.5 185.5 244.7 188.1

2050s 153.7 72.7 243.2 158.3 298.5 195.1 241 162.7

2090s 195.6 67.6 231.1 162.7 301.3 216 267.5 150.2

∆ 2050s-2010s -11.1 -16.8 -5.5 -1.6 4.2 5.2 -1.5 -13.5

∆ 2090s-2010s 13.2 -22.6 -10.2 1.1 5.2 16.4 9.3 -20.1

RCP8.5 + eCO2

2010s 177.5 91.1 256.4 162.7 284.5 192.5 243.7 191.7

2050s 143.9 76.9 235.6 149.4 285.4 184.6 228.8 153.1

2090s 141.4 59.2 218.3 143.9 284.9 186 242.3 143.2

∆ 2050s-2010s -18.9 -15.6 -8.1 -8.1 0.3 -4.1 -6.1 -20.1

∆ 2090s-2010s -20.3 -35.1 -14.9 -11.6 0.1 -3.4 -0.6 -25.3
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Figure 1. : Comparison between aDGVM2 results and data for (a) simulated biomass and Saatchi et al. (2011) biomass and their difference,

(b) simulated tree height and Simard et al. (2011) and their difference, (c) simulated tree cover and Friedl et al. (2011) tree cover and

their difference and (d) simulated evapotranspiration and Zang et al. (2010) evapotranspiration and their difference. In the figure the first

column shows the remote sensing products, the second column shows aDGVM2 results, and the third column shows the difference between

simulation and data. For results with masked land use cover see supplementary Figure S2.
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Figure 2. Scatterplots for simulated state variables against benchmarking data. (a) Simulated biomass and Saatchi et al. (2011) biomass,

(b) simulated tree cover and Friedl et al. (2010) tree cover, (c) simulated tree height and Simard et al. (2011) tree height, and (d) simulated

evapotranspiration and MODIS ET (Zhang et al., 2010). NMSE and RMSE are normalized mean square error and root mean square error,

respectively. Each point represents one grid cell in the study region.
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Figure 3. Comparison between simulated and observed biome patterns. (a) Simulated dominant biome type, (b) Sankey diagram showing

overlap between simulated biomes and potential natural vegetation cover (ISLSCP-II, Ramankutty et al., 2010) and (c) potential natural

vegetation. The Sankey graph shows how aDGVM2 biomes and PNV classes overlap.
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Figure 4. Simulated biome distribution for the 2000s, 2050s and 2090s under (a) RCP4.5+eCO2 and (c) RCP4.5+fCO2, and Sankey diagrams

showing the fractional cover of biomes and transitions between biomes from the 2000s to the 2050s and the 2050s to the 2090s under (b)

RCP4.5+eCO2 and (d) RCP4.5+fCO2. See Figure S6 for simulated biome distribution under RCP8.5.
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Figure 5. Projected change in biomass (t/ha), canopy area (%) and ET (mm/year) between the 2000s and 2050s, and between the 2000s and

2090s under (a) RCP4.5+eCO2 and (b) RCP4.5+fCO2. See Figure S7 for projected change of these variables under RCP8.5.
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Figure 6. Relationship between (a) evapotranspiration (ET) and mean annual precipitation (MAP), (b) ET and mean annual temperature

(MAT), (c) mean above ground biomass and MAP and (d) mean above ground biomass and MAT under RCP4.5. The lines (both solid and

dotted) in all figures represent the best-fit regression line. Data points represent spatially averaged ET (a, b) and biomass (c, d) for each year

from 1950 to 2099. See Figure S8 for these relation between ET, biomass, MAP and MAT under RCP8.5.
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Figure 7. Maps showing areas where CO2-fertilization compensates biomass dieback caused by climate change between 2000s and 2090s

under (a) RCP4.5 and (b) RCP8.5.
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Figure 8. Simulated climate niches of biomes for the (a) 2000s, (b) 2050s and (c) 2090s under RCP4.5+eCO2 and (d) 2000s, (e) 2050s and

(f) 2090s under RCP4.5+fCO2. The simulated biomes are overlaid on the climate envelopes of Whittaker’s biomes and are plotted following

Ricklefs (2008) and Whittaker (1975). See Figure S9 for projected change in climatic niches of biomes under RCP8.5.
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